Messaging Methods in a Service-Oriented
Architecture for Industrial Automation Systems

Vlad M. Trifa*T, Dominique Guinard*¥, and Moritz Koehler*
*SAP Research Switzerland, Kreuzplatz 20, Ziirich CH-8008, Switzerland
YETH Ziirich, Institute for Pervasive Computing, Haldeneggsteig 4, Ziirich CH-8092
fETH Ziirich, Auto-ID Labs, Sonneggstrasse 63, CH-8092 Ziirich
Email: viad.trifa@ieee.org,dguinard@guinard.org, mkoehler@ethz.ch

Abstract— In today’s business landscape, manufacturing com-
panies are facing a huge market pressure for reduced production
time and costs. Available industrial automation systems are
often based on proprietary communication protocols; therefore
integration with the company’s Enterprise Information Systems
(EIS) is a tedious and costly procedure. As real-time visibility
of devices in the organization is essential to optimize production
processes, we compare and discuss two messaging methods in a
Service-Oriented Architecture (SOA) for embedded devices, and
contrast the advantages of the flexible event-based messaging
mechanism offered by Web Services (WS-Eventing) with the
more reliable and scalable, but less interoperable Java Messaging
System (JMS). We finally propose several key factors that should
be carefully evaluated when implementing a robust industrial
messaging system.

I. INTRODUCTION

Globalization has deeply transformed the manufacturing
domain, and the perpetual race for cheaper products with
decreased time-to-market is one of its main consequences.
In order to remain competitive in today’s market, companies
need to upgrade their computing infrastructure so that is
allows an enhanced end-to-end supply chain visibility which
could provide timely detection and response to events on
shop floors across the whole supply chain. For this pur-
pose, system integration and seamless data exchange between
partners is essential, and the service-oriented architecture
(SOA) paradigm has quickly gained popularity as the most
reasonable method to build robust and flexible infrastructures
for connecting enterprise business applications. Nowadays,
countless companies are aware of the competitive advantages
brought by an efficient and reliable SOA, with Amazon,
Google, or Flickr being only a few of them.

The manufacturing industry is a huge market, and also faces
constantly changing demands and strong time-to-market pres-
sure. Unfortunately, currently available systems for industrial
automation suffer from the usage of proprietary communica-
tion protocols, making interoperability between manufacturing
systems from different manufacturers a difficult task. As a
result, the installation, customization, and maintenance of
such obsolete systems often requires colossal investments,
both in time and money.

Additionally, shop floor systems based on distributed em-
bedded devices concentrate the programming logic on a few
centralized mainframe computers accompanied by a large

quantity of “dumb” devices. The intelligence and behaviour
are tailored and individually programmed for each application,
with almost no possibility for run-time reconfiguration of the
different processes. One can overcome the rigid, monolithic
organization of traditional enterprise applications by using a
SOA, which allows applications and business processes to be
modeled at the top of a cross-institutional service landscape.
Data exchange between different departments and strategic
units has never been as easy as it is within a SOA, however,
when it comes to real-time visibility of the different assets
of a company (equipment, inventory, machines, etc.), there is
still a huge gap between the physical world and the high-level
monitoring systems. Coupling these higher-level applications
with shop floor machinery would increase the efficiency of
the business processes, and the integration of device-level
services with enterprise systems is essential for real-time
visibility with fine granularity in the whole supply-chain.
This in turn allows critical information to be delivered to
the interested parties in a timely manner, so that appropriate
measures can be taken with minimal impact on the production
process. In particular, a judicious processing and filtering of
large amounts of real-time information from the shop floor is
required for applications such as business activity monitoring,
where the collected information can serve for the optimization
and maintenance of the equipment.

The results presented here are part of the EU-project
SOCRADES [7], whose goal is to provide a set of protocols,
technologies, and middleware with the required flexibility,
reliability, and safety to integrate embedded systems into
a company so that it maximizes the benefits it can bring
to industrial processes. This article depicts our initial ef-
forts towards a system architecture that supports seamless
integration of device-level services with higher-level Web
Services and business processes situated at the level of
business applications such as Enterprise Resource Planning
(ERP) systems. Our work differs significantly from general
purpose infrastructures for distributed sensing application
such as SenseWeb [6], because the requirements for industrial
automation are different, and the need for automated discovery
of devices, dynamic reconfiguration, and reliable messaging
with hard real-time constraints are only a few of important
issues for an industrial solution. For example, we propose
a set of requirements for an efficient Real-Time Enterprise

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 13, 2009 at 07:12 from |IEEE Xplore. Restrictions apply.

infrastructure and suggest how existing technologies could
be leveraged to fulfill such requirements. In particular we
compare two messaging methods for data exchange between
low-power devices and back-end infrastructures.

Many approaches for building distributed computing ap-
plications have been proposed. Early component and object-
based communication middleware, such as CORBA and
DCOM were followed by more flexible architectures such
as Jini or UPnP, which are more suited to highly dynamic
environments such as the Internet and do not rely on specific
communication protocols. To further reduce platform and
programming language dependability, Web Services (WS)
were proposed for implementing an SOA, and have been used
to build industrial solutions for collaborative manufacturing
[9], robotic cells control and configuration [3], multi-robot
remote monitoring [10], or e-diagnostic [4]. Devices Profile
for Web Services (DPWS) [5] is a set of Web Services
for implementation constraints particularly suited for physical
devices and has been used to build highly integrated systems
for the SIRENA project [1]. ISA-95 is a standard for exchang-
ing data between business and manufacturing systems, and
an XML-based implementation (B2ZMML) compatible with
web services has been proposed [2]. OPC is also the most
widely adopted communication protocol in the manufacturing
domain, however, few ERP systems support full connectivity
with shop floor devices.

The main features for future automation systems are dy-
namic and automated reconfiguration of production systems,
cross-enterprise cooperation, scalability, and fault-tolerance.
Several requirements for the implementation of such a flex-
ible, scalable, robust, and platform independent SOA infras-
tructure are identified here:

e Logical view: The service is an abstract representation
of the functionality, and should be independent of the
implementation,

o Message orientation: The service is defined by messages
exchanged between agents rather than the properties of
the agents themselves (ideally stateless),

o Description orientation: A service is described by
machine-processable metadata which describes the inter-
face,

o Platform neutral: Messages are sent in a standard
platform- and language-neutral format to the services
defined in the interface.

II. TOOLS AND METHODS

This section describes the different units that are useful to
build a robust and flexible enterprise infrastructure, and are
described only at a conceptual level. Devices refer to low-
power embedded systems that have a TCP/IP connection and
different type of sensors attached.

In a business process, a large amount of data and events are
generated on the shop floor during normal operation. Some
events provide a general overview of the system status, while
others can indicate unexpected issues and failures. Not all

of these events provide meaningful information for business
applications; therefore the processing of events (e.g. filtering
or evaluation) can be done at several layers between the back-
end systems and the devices, where it makes the most sense,
while others are critical and need to be propagated quickly
to the back-end system.We are interested in how data can be
exchanged between such devices and the back-end Enterprise
Information Systems (EIS).

A. Device profile for Web Services (DPWS)

A Web Service is defined as a loosely-coupled, modular,
self-contained, and reusable software component that can be
used to develop distributed applications over standard Internet
protocols. As opposed to component technologies such as
DCOM or RMI, Web Services are not accessed via object-
model-specific protocols, but instead using standard Web
protocols (HTTP) and interoperable data formats (XML). The
W3C Web Service definition encompasses many different
systems, but in common usage the term refers to clients
and servers that communicate using XML messages that
follow the Simple Object Access Protocol (SOAP) format to
exchange data usually using HTTP/HTTPS. Web Services De-
scription Language (WSDL) is another XML-based language
used to describe Web Service interfaces, and is useful for
dynamic access to a devices available services and to their
metadata.

Devices Profile for Web Services (DPWS') defines a set
of constraints to implement secure Web Service messaging,
discovery, and event notification. Unlike UPnP, DPWS is
fully aligned with Web Services technology and benefits
from several specifications that allow seamless integration
of device-provided services in enterprise-wide application
scenarios. In addition, Microsoft’s Windows Vista and CE 6
platforms natively integrate DPWS support, which is a strong
incentive for market adoption.

In previous work, we have implemented WS-Eventing with
a temperature sensor that sends periodically its readings to an
EIS system [8]. This worked well as a single sensor was used,
but this would have been really problematic with multiple
sensors that send high-frequency data to a unique system.

B. JMS

The Java Message Service (JMS) defines a standard for reli-
able Enterprise Messaging, which is recognized as an essential
tool for building enterprise applications. Enterprise messaging
provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout
an enterprise. The JMS API adds to this a common API
and provider framework that enables the development of
portable, message based applications in the Java programming
language.

Java Platform Enterprise Edition (Java EE) is a widely used
platform for server programming using the Java programming

IThe latest DPWS specification can be found here:
http://schemas.xmlsoap.org/ws/2006/02/devprof/

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 13, 2009 at 07:12 from |IEEE Xplore. Restrictions apply.

Cons 1

[Cons 2
Cons n

The device notifies
each consumer

sequentially using
events

Application server

Producer 1@

Producer 2 @
Producer 3 ﬂ

Consumer 1

Devices publish data to
the queue implemented in
an application server, and
consumers pop the data
from the queue

A) WS-eventing B) JMS

Fig. 1. A) WS-Eventing: each device periodically notifies each consumer
with new events. B) in the point-to-point mechanism, several producers only
send a single message to a queue located within an application server. The
consumers then access the information from the queue.

language. The Java EE Platform proposes libraries and func-
tionality to deploy fault-tolerant, distributed, multi-tier soft-
ware, based on modular components running on an application
server (AS). The addition of the JMS API enhances the Java
EE platform by simplifying enterprise development, allowing
loosely coupled, reliable, asynchronous interactions among
Java EE components and legacy systems capable of mes-
saging. The Java EE platform’s Enterprise JavaBeans (EJB)
container architecture enhances the JMS API by allowing for
the concurrent consumption of messages, and by providing
support for distributed transactions, so that connections to EIS
systems using JMS implementations from different vendors
can all participate in the same transaction context.

C. Messaging

Two types of inter-object messaging paradigms are con-
sidered in this article and illustrated in Fig. 1. On the one
hand, the WS-Eventing specification is a publish-subscribe
event handling protocol (pub/sub) that allows consumers to
subscribe to a topic and be asynchronously notified by events
generated by a Web Service. This is simple to implement in an
SOAs, however the resulting architecture is quite complex. On
the other hand, the point-to-point mechanism where producers
insert their message in a queue, where it is read by only one
consumer. A queue may contain more than one consumer,
but the message is delivered to only one consumer. This
has several advantages over pub/sub as it is more efficient,
reliable, and scalable as load balancing between consumers
is inherent. It is especially suited to transmit large amounts
of high-frequency data, thus is very appropriate for sending
sensor readings. JMS supports both pub/sub mechanism and
point-to-point, but DPWS do not use a queuing mechanism
and only WS-Eventing is available.

III. DISCUSSIONS

The two messaging methods described earlier are not
mutually exclusive, and in some cases an ingenious mix
of both might exhibit superior performance and flexibility.
Therefore, a list of requirements based on several factors
has to be carefully crafted. One major issue would be the

performance evaluation of the system, which should include
variables such as the throughput (messages per second),
latency under different network loads, amount of system and
communication failures, and so on. Other essential criteria that
need to be considered for the implementation of a messaging
infrastructure are presented in this chapter.

WS-Eventing is useful for sending data across very different
hardware and software platforms thanks to the versatility
of SOAP messages. However, pub/sub is a very inefficient
method when implemented on a low-power device. An al-
ternative would be to use a intermediate machine that does
the distribution of events to subscribers. In a JMS queue, the
messages are consumed on a first come first served basis,
preventing deadlocks due to blocking calls. This is especially
interesting as business applications evolve towards an Internet
of Things, where thousands of sensors and devices send
asynchronous events to enterprise back-ends. Processing such
an enormous amount of data sent using blocking RPC calls or
classic SOAP webservice invocations is unlikely to be reliable
enough for industrial applications.

Scalability alone is not always sufficient, and for certain
business applications reliability, flexibility, and transaction
control are also needed. To achieve this, concrete JMS im-
plementations are often deployed within a Java Enterprise
compliant Application Server (AS). This combination enables
JMS queues to be reliable and transactional. Indeed, the use of
Message Driven Beans as entry points for JMS messages en-
ables these to be recovered after an application crash. Finally,
this combination allows for distributed JMS implementations,
automatically balancing the load amongst the JMS brokers.

a) Automatic discovery: Dealing with an ecosystem
where devices continuously connect and disconnect from a
network is not a new problem, and several solutions for
automated discovery have already been proposed and com-
mercialized, such as Apple’s Bonjour, Zeroconf, UPnP, or
DPWS. Automated discovery is an essential feature in any
dynamic environment, therefore very convenient for simplified
configuration of complex end-to-end industrial systems. An
automated discovery mechanism should be simple enough to
be implemented on low-power embedded devices, while offer-
ing a metadata exchange mechanism that provides information
about the capabilities and offered services of the different
devices.

b) Interoperability: JMS is a set of standards created
by multiple vendor implementations; therefore, one avoids
vendor lock-in problems, but the implementation is more
complex than the WS-Eventing mechanism. JMS allows for
abstraction between clients and servers; one can change the
implementation of different components without changing
the application layer. However, the JMS API is not always
interpreted in the same way by different vendors and so subtle
differences between different JMS solutions might exist. The
flexibility offered by the SOAP messaging is much wider, and
the interoperability is enhanced as data is exchanged using a
standard format defined by the WWW Consortium.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 13, 2009 at 07:12 from |IEEE Xplore. Restrictions apply.

c) Reliability: A messaging system must offer different
degrees of reliability for different type of information. Indus-
trial systems require reliable messaging when critical data has
to be transmitted (e.g., alarms), because the emitter must be
confident that the alarm was received and processed. The WS-
ReliableMessaging specification is being implemented in most
enterprise development frameworks, including those provided
by Microsoft, IBM and Sun, and also should be supported
at the device level. Unfortunately, reliable messaging at the
application layer is not part of the DPWS specification, but
is available with JMS.

d) Scalability: The number of DPWS messages that
have to be sent using WS-Eventing increases linearly with the
number of consumers per topic, as each consumer is notified
sequentially. As a certain amount of resources is associated
to send each message, this mechanism is a clear handicap
as the network becomes larger, and especially when this is
implemented on devices with limited resources. The JMS
mechanism can queue transactions and provides an optimal
load balancing, thus is much more scalable, especially when
multiple messaging servers are used.

e) Security: Security is not part of the JMS specifica-
tion, therefore if the application server is accessible from
outside the company, security flaws in the different vendors’
JMS implementations can threaten the whole system. While
existing firewalls and network security can be leveraged to
protect one’s back-end application and database servers from
security breaches, there is a significant security risk when
JMS servers are directly connected to the Internet. In contrast,
the WS-Security of DPWS contains specifications on how
integrity and confidentiality can be enforced on Web Services
messaging, for example by attaching signature and encryption
headers to SOAP messages.

IV. CONCLUSION

In this short paper, we have briefly identified and discussed
some practical requirements for the creation of simple, yet
robust, software infrastructure that enable real-time visibility
of shop floor devices in a manufacturing plant, which is
an essential feature for enabling Real-Time Enterprise and
future distributed manufacturing systems. Implementation of
DPWS on every device in the system is not feasible using
current state-of-the-art technologies, therefore efficient data
transmission between devices and higher levels needs to
be optimized. However, a detailed quantitative performance
comparison of the different approaches would be necessary for
concrete implementations of messaging in enterprise systems.
As each system will have a particular set of requirements,
only a general guideline is proposed here.

When real-time constraints are present, the usage of shared
communication channels is not recommended, especially if
a lot of data has to be conveyed to a central location for
processing, and proprietary communication protocols are still
the best option - as for example synchronization of devices
in a production line. However, using intermediate gateways

that can process some data locally, and then forward to EIS
only the relevant information in a reliable way using open
messaging protocols is a reasonable approach.

The automated discovery mechanism combined with the
interoperability of DPWS could be significantly improved by
using JMS to transmit large amounts of data from devices to
EIS. However, JMS is complicated and is an additional layer
with its set of servers. Also, more specific tools are needed to
manage JMS (dedicated servers, customized monitoring and
support software). Server monitoring and security issues are
just a few of the problems associated with a JMS, and should
be adopted only for internal messaging. Nonetheless, reliable
messaging at the application level can be ensured when the
queue is implemented within an application server, and JMS
should be preferred when reliability is a key requirement.

A meticulous system analysis will be required for each
application at hand, and JMS should be considered only if
the analysis suggests that performance and scalability of the
system can highly benefit from multiple JMS servers. It should
also be envisaged for transmitting business critical information
such as banking transactions, error alerting, etc. Many simpler
alternatives can provide the requisite layer of abstraction
between client and server while taking advantage of standard
HTTP and XML, and offer secure and asynchronous commu-
nication, so JMS should be avoided unless its benefits clearly
compensate its drawbacks.

REFERENCES

[11 Hendrik Bohn, Andreas Bobek, and Frank Golatowski. Sirena - service
infrastructure for real-time embedded networked devices: a service-
oriented framework for different domains. In Proc. of the International
Conference on networking, Systems, mobile communications and learn-
ing technologies (ICNICONSMCL’06), 2006.

[2] Dave Emerson, Kawamura Haruhisa, and Matthews Wayne. Plant-to-

business interoperability using the isa-95 standard. Technical Report

English Edition 43, Yokogawa, 2007.

Veiga G., Pires J.N., and Nilsson K. On the use of service oriented

software platforms for industrial robotic cells. In IFAC International

Workshop Intelligent Manufacturing Systems (IMS’07), 2007.

Min-Hsiung Hung, Fan-Tien Cheng, and Sze-Chien Yeh. Development

of a web-services-based e-diagnostics framework for semiconductor

manufacturing industry. Semiconductor Manufacturing, IEEE Trans-

actions on, 18(1):122 — 135, 2005.

[5] Francois Jammes, Antoine Mensch, and Harm Smit. Service-oriented
device comunications using the devices profile for web services. In
Proc. of 3rd International Workshop on Middleware for Pervasive and
Ad-Hoc Computing (MPACO05) at the 6th International Middleware
Conference, 2005.

[6] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb: an

infrastructure for shared sensing. IEEE Multimedia, 14(4):8-13, 2007.

S. Karnouskos, O. Baeker, L. M. S. de Souza, and P. Spiess. Integration

of soaready networked embedded devices in enterprise systems via a

cross-layered web service infrastructure. In 12th IEEE Conference on

Emerging Technologies and Factory Automation, 2007.

[8] Moreira L., Spiess P., Kohler M., Guinard D., Karnouskos S., and Savio

D. Socrades: A web service-based shop floor integration infrastructure.

In Internet of Things 2008, First International Conference for Academia

and Industry, 2008.

Weiming Shen, Yinsheng Li, Qi Hao, Shuying Wang, and Hamada

Ghenniwa. Implementing collaborative manufacturing with intelligent

web services. In Proc. of the 5th International Conference on Computer

and Information Technology, 2005.

Bin Wu, Bing-Hai Zhou, and Li-Feng Xi. Remote multi-robot moni-

toring and control system based on mms and web services. Industrial

robot: an international journal, 34(3):225-239, 2007.

3

—

[4

[lnar)

3
=

[9

—

[10]

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on April 13, 2009 at 07:12 from |IEEE Xplore. Restrictions apply.

